Fast Converging Series for Riemann Zeta Function
نویسندگان
چکیده
منابع مشابه
Notes Relating to Newton Series for the Riemann Zeta Function
This paper consists of the extended working notes and observations made during the development of a joint paper[?] with Philippe Flajolet on the Riemann zeta function. Most of the core ideas of that paper, of which a majority are due to Flajolet, are reproduced here; however, the choice of wording used here, and all errors and omissions are my own fault. This set of notes contains considerably ...
متن کاملq-Riemann zeta function
We consider the modified q-analogue of Riemann zeta function which is defined by ζq(s)= ∑∞ n=1(qn(s−1)/[n]s), 0< q < 1, s ∈ C. In this paper, we give q-Bernoulli numbers which can be viewed as interpolation of the above q-analogue of Riemann zeta function at negative integers in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Also, we will treat some...
متن کاملFast methods to compute the Riemann zeta function
The Riemann zeta function on the critical line can be computed using a straightforward application of the Riemann-Siegel formula, Schönhage’s method, or Heath-Brown’s method. The complexities of these methods have exponents 1/2, 3/8 (=0.375), and 1/3 respectively. In this paper, three new fast and potentially practical methods to compute zeta are presented. One method is very simple. Its comple...
متن کاملLagrangians with Riemann Zeta Function
We consider construction of some Lagrangians which contain the Riemann zeta function. The starting point in their construction is p-adic string theory. These Lagrangians describe some nonlocal and nonpolynomial scalar field models, where nonlocality is controlled by the operator valued Riemann zeta function. The main motivation for this research is intention to find an effective Lagrangian for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Journal of Discrete Mathematics
سال: 2012
ISSN: 2161-7635,2161-7643
DOI: 10.4236/ojdm.2012.24025